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An E-Field Integral Equation Solution
for the Radiation from Reflector
Antennas with Struts

DAVID C. JENN, MEMBER, EEE, AND WILLARD V. T. RUSCH, FELLOW, IEEE

Abstract—The E-field integral equation is applied to rotationally
symmetric reflector antennas with struts. Current is allowed to flow on all
the reflector surfaces and continuity is enforced at the conductor
junctions. Radiation patterns are presented for a small paraboloid
antenna, and the effects of the struts are clearly identified. These include
the strut cone radiation, pattern asymmetries introduced by the struts,
and gain loss and sidelobe level changes.

1. INTRODUCTION

HE BLOCKING OF a main reflector surface by

subreflectors, feed horns, and struts causes significant
changes in its radiation pattern. To date many approximate
analytical techniques have been applied to this problem [1]-
[8]. Equivalent currents or projected aperture methods are
commonly used to predict the pattern changes due to subre-
flectors and struts. The geometrical theory of diffraction
(GTD) is often used to estimate the wide angle sidelobe level.
All these methods are high-frequency approximations that are
only valid in certain angular regions. Furthermore, the
interactions between the surfaces are neglected, as is current
flow between two conductors at an attachment point. Hence,
the present reflector theory is a conglomeration of approxima-
tions, each applied in a specific regime of frequencies and
spatial sectors.

The method described here is based on the E-field integral
equation (EFIE), which is exact in its formulation. It can be
applied to any conducting body, multiple bodies in proximity
to each other, or multiple bodies connected by wires. Thus,
the total reflector problem can be solved by a single method
that is valid at all frequencies and angles. The present
formulation constitutes the first exact solution for the radiation
from reflector antennas with struts. Although the method can
be applied to any arbitrary geometry, several limitations will
be imposed to reduce the complexity of the solution. It will be
assumed that the strut cross section is small enough so that the
thin wire approximation is satisfied. Also, the reflector
surfaces must be axially symmetric, and the feed aperture
blockage will be neglected. The latter is justified on the
grounds that the investigation of strut scattering is the primary
topic of this study, rather than the aperture blocking effects.
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Fig. 1. BOR coordinate system.

II. METHOD OF ANALYSIS

Since the antenna configurations considered here will be
limited to those with rotationally symmetric reflector surfaces,
the problem reduces to one of scattering from a body of
revolution (BOR) with wires conductively attached. Integral
equation solutions to this problem have been presented by
several authors [9]-[11]. The EFIE is derived from Maxwell’s
equations and the boundary conditions [12], and applies to any
arbitrarily shaped infinitely thin perfectly conducting surface.
The method of moments (MM) is used to reduce this
integrodifferential equation to a set of simultaneous linear
equations that can be solved to obtain the current on the
surfaces. Once the currents are known the scattered field, and
hence the total radiated field, can be computed.

The MM solution for the antenna surface currents is the
same as that used by Mautz and Harrington [13], [14]. The
reflector surfaces are divided into annular rings concentric
with the axis of symmetry. A curvilinear coordinate system
(t, ¢) is established on the surface as shown in Fig. 1. The
current is expanded in terms of a product of overlapping
triangles or pulses and Fourier modes as follows:

e*j”'b
Ji=tTy(t) , i=1, 2, -+, number of triangles,
o
¢))
e —iné
J2=¢Pi(1) — i=1, 2, ---, number of pulses.
2

T;(t) and P;(t) are the commonly used triangle and pulse
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Fig. 2. Details of the junction region.

functions [14], and t and ¢ are unit vectors. The time
harmonic factor e/“* has been suppressed. In (1) and (2) n =
0, £1, £2, ++-, +oo.

Similar to the BOR, the strut is divided into segments and
triangular expansion functions are defined

3

The index j runs over all strut basis functions, 4 is an arclength
variable along the axis of the strut, and h; a unit vector directed
along the axis of the jth segment. It is assumed that the strut
radius @ is much smaller than the physical length and the
wavelength, and therefore only an axial current will be
present. This is often referred to as the thin wire approxima-
tion [15], [16].

The method of handling the junction is similar to the one
used by Shaffer and Mitschang [9]. The approximation for the
Jjunction region consists of an attachment segment on the strut
(the segment closest to the junction) and an attachment disk,
which are shown in Fig. 2. The coordinates of the attachment
point in the BOR coordinate system are (p,, ¢,, 2,), and it is
folded in the junction plane ¢ = ¢,. It approximates the BOR
surface in the junction region. A polar coordinate system (r, 7)
is defined on the disk, where vy is measured from the z = z,
plane and r lies on the disk and points outward from the
attachment point. Current is allowed to flow radially outward
from the junction and is forced to decay to zero at the edge of
the disk. The basis function is constructed to have the proper
1/r radial dependence

Jo=—1r(b—-r)/R2xr(b-a)]

3r=h,T;(h)/@2ra).

C))

where b is the disk radius. The expansion function for the
attachment segment (half a triangle) prevents the strut current
from going to zero at the attachment point

J,=aT,(h)/(2ma). ®)]

The unit vector a is directed outward along the attachment
segment. Equations (4) and (5) have been scaled so that
Kirchhoff’s current law is satisfied at the junction (r = a).
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Now, following the method of moments, the total current on
the body is expressed as a superposition of all of the basis
functions

I=3 N (3183 + 1ny+2 1434 (6)
n i J !

where n, i, j and / take on all possible values. Weighting
(testing) functions are chosen according to Galerkin’s method.
The testing operation is used to reduce the EFIE to a set of
linear equations that can be written in matrix form as

Z1=V. @]

The current vector I contains the unknown coefficients in the
expansion (6). Equation (7) is actually an infinite set of
equations, but can be reduced to a finite set by choosing a
maximum value for n based on some convergence criteria.

Since any given current must be tested with all the
weighting functions, nine distinct types of impedance elements
result

7%, 277, 77 (self-terms)

Zv, 2, 29, 7, ¥, 7% (interaction terms).

The superscripts s, w, and j refer to surface, wire (i.e., strut)
and junction, respectively. The matrix equation (7) can be
rewritten as

Y A3 y Al Zsj IS \A
YACEEY ALY A wj I"l=|V” . (8)
Zis  Ziv g 10 Vi

The impedance blocks relating to the surfaces actuaily consist
of several submatrices, one for each mode number n. As
pointed out in [9] the impedance matrix takes on the following
block structure:

s, L2y 2y
b .
v L
Zy L2y LY
Z= R A ©)
zs,i2 29,
Zy o Ly o IRIT LY
L_Zﬁ Z{)s . ZI;SM: 7w ij_

where M is the magnitude of the highest mode number (i.e., n
=0, =1, -+, +M). The detailed expressions for the
impedance elements Z are given in [9] for the BORs, wires,
junctions, and their interactions.

The elements of the excitation vector V are defined by

sz%SSWf - Eyds

(10

where p = s, worj and E; is the primary feed field, which is
located at the origin of the BOR coordinate system. For
reasons mentioned earlier, blocking by the feed aperture will
be neglected. In general, the far field of an arbitrary feed
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radiating in the —z direction can be represented by

{0 cos $Fs(6)+é sin $Fu(8)} - ;R . 6>90°
E/=
0, 6<90°
an

where 0 and ¢ are unit vectors and R is the distance from the
feed to a point on the antenna surface. The functions Fg and Fy
define the feed taper in the E- (¢ = 0°) and H-planes (¢ =
90°), respectively. Since the source is on the axis of symmetry
only the n = +1 modes of the BOR excitation vector are
nonzero, but because of the presence of the struts, the
azimuthal modes are not decoupled as they would be for a pure
BOR. Thus, the interaction of the struts with the reflector
surfaces will generate higher order BOR currents. The
derivation of the excitation vector and the far-field relationship
to the current is discussed in detail in [17].

The excitation of higher order modes substantially increases
the dimension of the impedance matrix and restricts the size of
the antenna that can be analyzed. Partitioning is used to reduce
the size of the largest matrix that must be inverted. The
particular method use here is based on Woodbury’s identity
(18], [19]

(A+UPW) T=A-1-A-U(P+WA-'U)"'WA -1,

(12
All the multiplications in (12) are outer products, and the
matrices must be conformable and nonsingular. For the
present application let P = I (the identity matrix) so Z = (A
+ UIW). The impedance matrix (9) is in the form

A, ' B,
' (13)
A, | B,
G C - C D
where
B,=[Z%" Z9] 14
Zw:
C.= [Z’;’] (15)
n
A,=[Z%] (16)
and the subscript s = 2M + 1. Letting
B, 0
B, 0
U= : : a7
B, 0
0 I
0 0 --- 01
= 1
w I:Cl Cz e CS 0] (8)
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and

A,
Az
(19)

in (12) yields
z - [Af oA BXGATL TAL _'.'3';’_‘3.‘?_‘_'.-]

20)

where i and j represent the index of the i, jth submatrix and
take on values from 1 to s. The partitions correspond to those
in (9) and (13) and §; is the Kronecker delta. The X, are
determined from

X=(I+WA-'U)"! 21
1 X X,
x_[x3 x4] (22)
I D' _,
X= 23)

2 CA ‘ ]Bk 1

k=1
Because of the symmetry between the impedance elements
Cn=§s+l—n (24)

where the tilde denotes the matrix transpose.
The number of rows and columns in the original impedance
matrix (9) is

NROW=Q2M+1)N+NWJ (25)
where
NW  number of triangles on the struts
NJ number of junctions

NWJ NW + NJ
N total number of BOR basis functions (triangles and
pulses).

Thus the largest matrix that must be inverted when using
Woodbury’s identity is the largest of N X Nor QNWJ) X
(2N WJ). This is much more manageable than that required to
solve (9), because NROW could easily be 1000 for even a ten
wavelength paraboloid.

II1. RADIATION PATTERNS

The radiation patterns were calculated for the 10 A (A is
wavelength) prime focus paraboloid shown in Fig. 3. The axes
of the struts are at an angle «; with respect to the z axis. There
are three struts spaced 120° apart. The reflector edge angle is
64° and the edge taper is approximately 7 dB. Fig. 4 compares
the field scattered from the reflector only to that scattered from
the reflector with struts. Three different strut radii are shown
for oy = 50.2°. The total E-plane field is plotted in Fig. 5;
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that is, the field scattered by the reflector surfaces and radiated
by the feed. A comparison of Figs. 4 and 5 shows that the feed
field cancels much of the scattered field in the rear hemi-
sphere. The asymmetry introduced by the struts is evident in
comparing the ¢ = 0° and 180° patterns of Fig. 5. Because of
the strut placement the H-plane pattern is identical for the ¢ =
90° and 270° planes, as shown in Fig. 6. Normally for a
paraboloidal reflector without struts the cross polarization in
the principal planes is zero. When struts are added, a nonzero
cross-polarized field can result, as shown in Fig. 7 for the H-
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Fig. 7. H-plane cross-polarized field of a 10 \ paraboloid with struts.

TABLE I
CALCULATED GAIN LOSS AS A FUNCTION OF STRUT RADIUS

Method Strut Radius Gain Loss (dB)
EFIE Without Struts Reference
EFIE a = 0.025 ) 0.096
EFIE a = 0.050 \ 0.278
EFIE a = 0.100 x 0.392
IFR a = 0.100 » 0.385

plane. The cross polarization in the E-plane, however,
remains below —50 dB.

One method commonly used to establish the gain loss from
strut blockage is based on the induced field ratio (IFR)
hypothesis [20]. The field scattered from the struts is assumed
to be that excited by the plane-wave component of the focal-
region field. The formulas relating gain loss and sidelobe level
to the strut radius are given in [21]. For a cos § feed pattern
and a strut radius of 0.1 A the resulting loss is 0.385 dB, which
is close to the MM value of 0.392 dB. Table I lists the gain loss
as a function of strut radius as obtained from the EFIE and IFR
calculations.

The IFR approach also provides a means of estimating of
the co- and cross-polarized sidelobe levels [22]. For ¢ = 0°
the IFR predicts a first-sidelobe level of —22 dB, which is
close to the MM result shown in Fig. 5. The IFR estimate for
the peak cross-polarized level in the this plane is — 35 dB, but
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Fig.9. Strut cone contours for three equi-angular struts at an angle of 50.2°
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the MM level of —28 dB is significantly higher. The
discrepancy is probably due to violation of the basic TFR
assumption; that is, the plane wave component of the focal
region field dominates. Actually reflections from the ends of
the struts and feed illumination will corrupt the plane wave
structure along the strut. This is illustrated by examining the
phase of the strut current. If the plane wave field dominates
then the phase should be linear across its length (L) with a total
change of kL cos o;. Fig. 8 shows the phase of the current
along the ¢ = 0° strut for @ = 0.025 \, L = 5.075 A and a;
= 50.2°. In spite of the apparently erratic phase due to the
other components of the focal region field, the least squares
slope is 226 degrees per wavelength along the strut, which is
close to the plane wave phase of 230 degrees per wavelength.

The effect of the struts on the radiation pattern is usually
most notable at wide angles. According to the IFR hypothesis,
the effect at wide angles can be estimated assuming the strut
excitation is dominated by the plane wave component of the
field in the focal space of the reflector. When these induced
currents are integrated, the radiation is locally maximum on
cones which lie along the axis of each strut. The calculated
position, width, and intensity of these so-called ‘‘strut cones’’
has been in good agreement with measured data {20]. The strut
cone contours are -plotted in Fig. 9 for the paraboloidal
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TABLE II
COMPUTER TIME TO SOLVE FOR THE CURRENTS ON A 10 A PARABOLOID
WITH STRUTS

Solution Modes Computer Time (min) Largest Matrix
Method ™M) IBM 3083 CRAY X-MP/48 Inversion
Direct 1 — 2.7 694 x 694

2 * * 1064 x 1064

3 * * 1434 x 1434
Woodbury’s 1 53 17 278 x 278
Identity 2 115 33 278 x 278
3 198 — 278 x 278

— Calculation not performed
* Calculation not possible because of insufficient memory

reflector of Fig. 3 with o, = 50.2°. The curves are the
projections of the radiation maxima onto the x-y plane, and
therefore some of the points actually lie behind the reflector (8
> 90°). The x and y direction cosines are # = sin 8 cos ¢ and
v = sin 0 sin ¢, respectively.

Fig. 10 shows the radiation patterns in the ¢ planes that
correspond to those indicated in Fig. 9. The expected strut
cone locations are marked by arrows. These maxima generally
agree with those shown in Fig. 9. The fact that they are not
well defined is not surprising in view of the strut phase
behavior in Fig. 8. Even if the phase errors were not present,
the intensity of the cones is not significantly greater than the
scattered field from the reflector surface, because the struts are
thin. (The lobe intensity increases with the radius of the strut,
as can be seen by comparing the lobe at 100° in the scattered
field patterns of Fig. 4.) In directions where the contribution
from the reflector is smaller the strut lobes do dominate (for
instance, the strut cone at 8 = 90° in the cross-polarization
pattern of Fig. 7). Similar calculations with other strut angles
were also in agreement with the IFR locations, and as
predicted by the IFR formulas the strut cones shift toward the
main beam for smaller «;.

1V. CoMpuTER CONSIDERATIONS

The antenna calculations were done on IBM 3083 and
CRAY X-MP/48 computers. The run times for several cases
are shown in Table II. Without the use of Woodbury’s identity
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TABLE III
MAIN BEAM VALUE VERSUS NUMBER OF AZIMUTHAL BOR MODES FOR
THE REFLECTOR OF FIG. 3 WITH @ = 0.025 A AND Fr = Fy = cos 6

Configuration M* Gain (db)
Reflector only 1 29.197
Reflector and disk 1 29.190
Reflector with struts 1 29.138
Reflector with struts 2 29.093
Reflector with struts 3 29.093

*Modes: n = 0, £1, -+, =M

to partition the impedance matrix, the calculation of even 10 A
diameter reflectors would not be possible on the particular
computer systems used here. No special effort was made to
optimize the software to take advantage of the CRAY
architecture. However, significant reductions in time probably
would not occur because most of it is due to read/write
operations to disk files.

The sensitivity and convergence of the solution was tested
as a function of several parameters: number of azimuthal BOR
modes, attachment disk size, and MM subsection size. Mode
convergence was tested using three, five, and seven azimuthal
BOR modes. From [9] the magnitude of the highest required
mode number should be

M=27/¢,=3 (26)

since ¢, = 120° is the angular separation between struts. The
convergence of the main beam value is given in Table III. The
results for five and seven modes were within 0.2 dB of each
other down to the — 40 dB level.

The results will depend to some extent on the attachment
disk radius. Since the junction area is small compared to the
total reflector surface, it is expected that the choice of
attachment disk radius is not critical in calculating the main
beam maximum or even the first several sidelobes. In an effort
to estimate the sensitivity of the field to the junction
parameters, calculations were done for several disk sizes.
Although the radius differs slightly at each attachment point,
the average value used in all the calculations shown was 0.15
A. Additional calculations were done for an average radius of
0.3 A and for no current flow at the junction (b = 0). Either
way there was no significant change down to the —30 dB
level, and only a 1 to 2 dB change below the — 30 dB level.
Interestingly enough, if reducing the attachment disk radius
lowered a particular wide angle sidelobe, then increasing the
disk radius would raise it and vice versa.

The effect of the surface and strut segment size was also
investigated. Because of computer memory limitations, the
segments could not be reduced indefinitely. The smallest
segment size that could be handled was about 0.08 \ (for both
the reflector surfaces and the struts). Increasing these to 0.12 A
caused small changes (=1 dB) in the — 35 to — 50 dB range,
and also a slight shift in some of the wide angle sidelobe
positions.

V. SUMMARY

The EFIE has been applied to rotationally symmetric
antennas and radiation patterns were calculated for a 10 A

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 37, NO. 6, JUNE 1989

paraboloid with struts. The IFR hypothesis was used to predict
the strut cone radiation maxima. The co-polarized sidelobe
positions that were calculated for this paraboloid were in
agreement with the expected locations. Evidently, in this case,
the plane wave component is the major contributor to the
focal-region field even though a reflector this size is consid-
ered electrically small.

In principle this solution is applicable to reflectors of any
size and the extension to dual surfaces is straightforward. The
thin wire limitation on the struts can be removed by allowing
higher order circumferential currents. Thus computer size is
the major limiting factor in extending this solution to
electrically large antennas.
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